Be DYNAMICS DURING PEDOGENESIS AND EROSION – A COMPARISON OF METEROIC ¹⁰Be/⁹Be RATIOS AND IN SITU ¹⁰Be-DETERMINED EROSION RATES

Proposal Presentation by Sophie Greene

In a nutshell...

	"meteoric-10"	"9"	"in situ -10"	"meteoric:9 ratio" 10Bemet
	¹⁰ Be _{met}	⁹ Be	¹⁰ Be is	⁹ Be
Ease of measurement				(Hopefully)
Ease of interpretation		X		(Hopefully)

Types of questions Be isotope data could address:

- Do tropical environments erode faster than arid environments? By how much?
- How are trace metals transported during soil formation?
- How long does it take for soils to redevelop after a historic glaciation?

Outline

- Meteoric ¹⁰Be
 - formation, measurement, erosion rate proxy?
- In situ ¹⁰Be
 - formation, measurement, erosion rate proxy?
- ⁹Be
 - distribution, measurement, tool for improving meteoric interpretations?
- Overview of initial sample sets
- Project logistics

A perfect world: soil profiles of ¹⁰Be_{met}

Measured Meteoric ¹⁰Be in soil profiles

Fig. 9. Tropical and subtropical oxic soils (Barg et al., 1997; You et al., 1989) showing deeper infiltration of meteoric ¹⁰Be and different profile shape dynamics than temperate soil profiles. Dashed lines indicate interpolation between point-sampled measurements.

Graly et al. 2010

Remobilization of ¹⁰Be_{met}

Be^{2+} = soluble in water

Meteoric ¹⁰Be concentration is grain size dependent

¹⁰Be_{met} concentrations ~ 1 x 10⁸ atoms/gram

Does meteoric ¹⁰Be bioaccumulate?

adapted from Conyers 2014

sample material

Several orders of magnitude difference between ¹⁰Be in Hickory and surrounding soils

In Summary: Difficulties in ¹⁰Be_{met} interpretations

- Could be leached from soils in acidic environments
- Has grain size dependent concentrations
- Bioaccumulates in some species

Remobilizes in unpredictable ways

in situ ¹⁰Be

- concentrations many orders of magnitude lower than meteoric ¹⁰Be
- Can only measure in sand-sized quartz
- Expensive and time consuming
 - measured by stripping off meteoric
 ¹⁰Be and dissolving the residual quartz

¹⁶O ¹⁶O ¹⁰Be ^{+p}

grain coating

Crystalline Matrix with ¹⁶O

Benefits of in situ ¹⁰Be

Known production rates with depth

No remobilization

Sites around the world with known in situ-derived erosion rates

Portega and Bierman 2011

The best of both worlds?

- Measuring meteoric ¹⁰Be, but normalizing for grain size and remobilization
- What has a similar reactivity as meteoric ¹⁰Be that is also present in surficial materials?

¹⁰Be

⁹Be

- Weathers out of bedrock
- Not limited to sand-sized quartz grains
 - ⁹Be present in grains and grain coatings, but only the grain coating should relate to meteoric ¹⁰Be

grain coating with "mobile" ⁹Be

Crystalline Matrix with some ⁹Be

In Review:

Research questions:

 Are¹⁰Be_{met}/⁹Be ratios useful as a proxy for ¹⁰Be_{is} derived erosion rates?

SL

In soil profiles, are ¹⁰Be_{met}/⁹Be ratios similar to ¹⁰Be_{is} trends?

 Overall, what does the concentration and location of ⁹Be in grain coatings tell us about Be during pedogenesis?

What I have:

 Access to 10 sample sets that have already be analyzed for ¹⁰Be_{met} and ¹⁰Be_{is}

What I have to do:

- Extract ⁹Be from those samples both by stripping the entire grain coating and extracting from the grain sequentially.
- Compare ¹⁰Be_{met}/⁹Be ratios to existing erosion rate data to determine if correlations exist.
- Use ⁹Be sequential extraction results to determine if the nature of the Be-grain association corresponds to Be mobility.

Sequential Extractions of ⁹Be

MINERAL GRAIN in situ Crystalline-bound

Exchangeable — $BaCl_2$

Amorphous Oxide-Bound — HCI

Crystalline Oxide-Bound — HH

Organic-Bound — HNO_3 and H_2O_2

Residual — Total Digest

Sequential Extractions of ⁹Be

Measuring concentrations on the ICP-OES

Installing the ultrasonic nebulizer to decrease detection limits

• Monitor Si content

Initial sample sets: phase 1

Scottish Peat Soil Pit

• Acidic conditions, lots of organic material, tephra

Initial sample set continued:

Waipaoa River Sands

 Tectonically active region, high rates of erosion

Initial sample set continued:

Proglacial lake sediments

 Meteoric ¹⁰Be data available from varves deposited immediately after glacier receded, and varves deposited ~2000 years after glaciation

Phase 2: testing ratio across climatic and tectonic regimes

							in situ met	sediment
sample	climate	soil type	tectonic setting	rock type/parent material	precip (mm/yr)	pub sources	sample pairs	yield data?
				deformed metamorphic rocks,				
				fold and thrust belt with				
Susquehanna River	humid temperate,			sandstone, shale, and carbonate,				
Sands	glaciated	n/a	passive margin	far N and W sandstone and shale	800-1300	Joanna Reuter, UVM thesis	17 paired	yes
	glacial and							sort
	immediately post			metamorphic and igneous			200+ met	ofvarve
NAVC varves	glacial	n/a	passive margin	intrusive (granites)	no data	NAVC proposal	only	thickness
	humid temperate,	blanket bog peat		metamorphic and igneous				
Scottish soil profile	glaciated	over glacial till	passive margin	instrusive	~1100	Fuklop et al. 2015	18 paired	n/a
	humid temperate,			deformed metamorphic rocks,			62 met, 8	
Potomac River Sands	never glaciated	n/a	passive margin	sandstone, shale, and carbonate	890-1320	Trodick 2011	paired	yes
Barron River Sands (NE	humid, tropical, never							
Australia)	glaciated	n/a	passive margin	granitic and biogenetic carbonate	900-2500	Nichols et al. 2014	15 paired	modeled
Georges River Sands (SE	humid temperate,							
Austrailia)	never glaciated	n/a	passive margin	triassic sandstone, granodiorite	800-1300	not published	9 paired	modeled
China, 3 Rivers Region	tropical, never		tectonically	lightly metamorphosed granite				
Sands	glaciated	n/a	active	and sedementary	500-1000	not published	>120 paired	some
	sub-humid to							
	hyperarid, tropical,					Some in Bierman and Caffee,		
Nambian River Sands	never glaciated	n/a	passive margin	granitic and gneissic	25-400	2001	12 paired	no
	temperate, humid,		tectonically	carbonate bearing silt and		Reusser and Bierman 2010,	90 met; 18	
Waipoia River Sands	never glaciated	n/a	active	sandstone	1000-1500	not all data published	paired	yes
				river terrace sand and silt derived				
	temperate, humid,		tectonically	from carbonate bearing silt and				
Waipoia River Soil Pit	never glaciated	pumice and podzol	active	sandstone	1000-1500	Reusser et al. 2010	13 met only	n/a
				meta-siltstone, metamorphosed				
Great Smokey Mountains	temperate, never			conglomeratic sandstone,				
soil profiles	glaciated	Inceptisols	passive margin	carbonates and gneiss	1400-2300	Jungers et al., 2009	59 paired	n/a

Potential problem:

⁹Be concentrations tend to be between 10 and 300 ppm in coal, but 2000 ppm has been measured.

For samples in coal rich areas, coal could provide additional ⁹Be to our samples

Timeline

Summer 15	Fall 15	Spring 16			
Data Collection					
Data Analysis					
	Writing manuscripts				

Thanks! Any Questions?

Does meteoric ¹⁰Be bioaccumulate?

All samples, biomass and soil, within an order of magnitude

Conyers 2014

Hypotheses

Relatively few studies of ⁹Be sequential extractions from soils and sediments have been performed (Barg et al. 1997, Bacon et al. 2012, Wittmann et al. 2012), so it is difficult to predict which fractions of sequential Be extraction will have the highest ⁹Be concentrations. Barg et al. (1997) and Wittmann et al. (2012) show that Be accumulates in organic-rich and clayrich layers of soils. I therefore hypothesize that the sequential extraction fractions that selectively dissolve organic and exchangeable phases will liberate the largest quantity of Be. However, in samples with significant amounts of humic acids, I hypothesize that the crystalline oxide and amorphous oxide-bound fractions will contain significant amount of ⁹Be (Taskahashi et al. 1998). Because the total grain coating is extracted for ¹⁰Be_{met} analysis, I hypothesize that the ⁹Be from the total grain coating will result in the most meaningful relationship between ⁹Be, ¹⁰Be_{met}, and long-term erosion rates. I hypothesize that there will be an increased concentration of ⁹Be in grain coatings in the distal glacial lake sediments than the proximal sediments because ⁹Be will have become more mobile during pedogenesis in the time after glaciation.

Many published reports show results that indicate the ¹⁰Be_{met}/⁹Be ratio normalizes ¹⁰Be_{met} data to account for grain size effects, ¹⁰Be_{met} remobilizing and/or ¹⁰Be_{met} leaching (Merrill et al. 1959, Barg et al. 1997, Bacon et al. 2012, Conyers 2014, Von Blanckenburg et al. 2012, Wittmann et al. 2010, Willenbring and von Blanckenburg 2010). Because publications indicate that ¹⁰Be_{met}/⁹Be ratios could be meaningful indicators of erosion, I hypothesize that a ¹⁰Be_{met}/⁹Be ratio that includes the total ⁹Be in the outside coating of grains will correlate with erosion rates calculated using ¹⁰Be_{is} data.